A Proposed Feature Extraction Method for EEG-based Person Identification
نویسندگان
چکیده
We propose in this paper a feature extraction method to extract brain wave features from electroencephalography (EEG) signal. The proposed feature extraction method is based on an assumption that EEG signal could be considered as stationary if the time window is sufficiently short. With this assumption, EEG signal has some similar properties to speech signal and hence a feature extraction method that is currently used to extract speech features can be applied to extract brain wave features from EEG signal. Mel-frequency cepstral coefficients are features extracted and evaluated in EEG-based person identication. Experimental results show that the proposed method could provide very high recognition rate.
منابع مشابه
Using Shannon Entropy as EEG Signal Feature for Fast Person Identification
Identification accuracy and speed are important factors in automatic person identification systems. In this paper, we propose a feature extraction method to extract brain wave features from different brain rhythms of electroencephalography (EEG) signal for the purpose of fast, yet accurate person identification. The proposed feature extraction method is based on the fact that EEG signal is comp...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کامل